Einmal in die Zellen eingebracht, kann der «spike-lose» Coronavirus-Bauplan, auch Replikon-RNA genannt, alle Schritte des viralen Lebenszyklus durchlaufen, aber keine neuen infektiösen Coronavirus-Partikel produzieren. Nur wenn dieselben Zellen das Spike-Gen erhalten, können sie virenähnliche Partikel absondern, die mit Spike-Proteinen versehen sind. Diese Partikel enthalten das gesamte virale Genom bis auf den Bauplan für das Spike-Protein – dieser bleibt in den produzierenden Zellen zurück. Die neu entstandenen Partikel können dann verwendet werden, um andere Zellen zu infizieren und so eine natürliche Infektion nachzuahmen. Diese neu infizierten Zellen verfügen jedoch ebenfalls nicht über den Bauplan für das Spike-Protein und können daher selber keine neuen Viruspartikel produzieren, die wiederum andere Zellen infizieren könnten. So können im Labor geringere Vorsichtsmassnahmen hinsichtlich der biologischen Sicherheit getroffen werden. Die Studie zum neuen Modell wurde nun im Wissenschaftsmagazin Science publiziert.
Entscheidender Vorteil
«Ähnliche Systeme wurden bereits früher präsentiert, aber es gibt einen entscheidenden Unterschied zwischen diesen und dem unseren», sagt Volker Thiel, Letztautor der Studie zusammen mit Charles M. Rice. Bei den zuvor publizierten Systemen wurde das SARS-CoV-2-Genom ebenfalls in zwei Teile aufgeteilt – ebenso in einen Teil, der das gesamte Genom bis auf ein Protein enthielt, das für den Zusammenbau des Virus wichtig ist. Auch dieses Protein wurde separat hergestellt. Dabei handelte es sich jedoch nicht um das Spike-Protein. Dank dem neuen Modell können nun Eigenschaften des Spike-Proteins besser untersucht werden. Dies ist ein grosser Vorteil: «Mutationen des Spike-Proteins gaben bisher den grössten Anlass zur Sorge über neue Varianten», erklärt Thiel.
Einfacher und sicherer zu handhaben
«Die Veränderung des einen oder anderen Teils des gespaltenen Genoms mag nicht nach einer grossen Sache klingen, ist es aber», betont Thiel. Das gesamte SARS-CoV-2-Genom besteht aus etwa 30'000 Buchstaben, was es trotz moderner molekularbiologischer Methoden schwierig macht, es zu handhaben, zu verändern und selbst herzustellen. Der genomische Bauplan des Spike-Proteins besteht aus weniger als 5‘000 Buchstaben und ist damit viel einfacher zu handhaben und zu verändern. «In unserem Modell kann also der kleinere Spike-Genomteil des Virus, in dem die meisten Mutationen auftreten, die zu Problemen führen, relativ einfach gehandhabt werden, während der grössere, zweite Teil des Genoms konstant bleibt», erklärt Thiel.